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Abstract Melnikov methods are used for suppress-
ing homoclinic and heteroclinic chaos of a pendu-
lum system with a phase shift and excitations. This
method is based on the addition of adjustable amplitude
and phase-difference of parametric excitation. Theoret-
ically, we give the criteria of suppression of homoclinic
and heteroclinic chaos, respectively. Numerical simu-
lations are given to illustrate the effect of the chaos
control in this system. Moreover, we calculate the max-
imum Lyapunov exponents (LEs) in parameter plane,
and study how to vary the maximum LE when the para-
metric frequency varies.
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1 Introduction

Plenty of academic research about controlling chaos
and bifurcations have been studied after the pioneer-
ing works of OGY [20,22]. For example, Chen et al.
[9,10] and Kapitaniak [15] introduced recent develop-
ments in the fields of controlling chaos and bifurca-
tions, an optimal control method developed by Lenci
and Rega [16–18] has been applied to various non-
linear oscillators, and so on. It is well known that
homoclinic and heteroclinic bifurcation is a kind of
important source of structural instabilities in nonlinear
dynamical systems. The chaotic dynamics are usually
derived from the homoclinic or heteroclinic intersec-
tion between the stable and unstable manifolds in the
Poincaré map. So homoclinic and heteroclinic bifur-
cation can not be ignored in most cases, consequently
the elimination or suppression of chaotic dynamics is
desirable from a practical point of view. Chacón pro-
posed Melnikov methods in [6–8]. Cao and Chen [4]
used Melnikov methods to study the suppression of
homoclinic and heteroclinic bifurcation of a general
one-degree-of-freedom nonlinear oscillator. Cao et al.
[3] used weak resonant excitations to control choas
in an externally-forced froude pendulum. Wang et al.
[23], Yang and Jing [27] studied the pendulum equation
by using Melnikov methods, and gave the conditions
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of suppression of homoclinic and heteroclinic chaos.
Research on controlling chaos of pendulum equation
can be seen in references [1,2,5,21,25,26]. We will
use Melnikov methods to study the pendulum equation
with excitations and a phase shift in this paper.

We consider the problem of suppressing chaos of
the following pendulum equation with a phase shift
and excitations

ẋ = y, ẏ = −αx − δy − [1 + f0 cos(Ωt + Ψ )] sin x

+ f1 sin(ωt + θ), (1)

where δ is the damping constant, α represents the
spring constant, f1 sin(ωt + θ) is the external excita-
tions for driving the system to chaotic state, θ denotes
the phase shift, parametric excitation f0 cos(Ωt + Ψ )

is the chaos-suppressing excitation.
The chaotic behavior of system (1) for some special

cases has been extensively studied, for examples, for
α = 0, θ = 0, and f0 = 0, D’Humieres et al. [12] gave
an experimental study of the chaotic states and shown
the symmetry breaking of periodic orbits, intermit-
tent behavior,and period-triple bifurcations in chaotic
region. Wiggins [24] and Nayfeh and Mook [19] inves-
tigated the existence of the chaotic dynamics of the
system (1) for f0 = 0 and θ = 0 by using Melnikov
function. Jing and Yang [13,14] studied the bifurca-
tion of periodic solution and criterions of existence
of chaos for system (1) as Ψ = 0 and θ = 0 under
periodic and quasi-periodic perturbation by using Mel-
nikov function and second-order averaging method and
numerical simulations. Yang and Jing [27] researched
the inhibition of chaos of the system (1) for θ = 0
by using Melnikov methods proposed in [7]. Chen and
Jing [11] studied the bifurcation of periodic solution
and criterions of existence of chaos for system (1) as
Ψ = 0 under periodic and quasi-periodic perturba-
tion by using Melnikov function, second-order averag-
ing method, and numerical simulations. However, there
has been less attention to the inhibition of chaos for the
pendulum equation (1) with excitations and a phase
shift.

In this paper, Melnikov methods [7] are used for
suppressing homoclinic and heteroclinic chaos of a
pendulum system with a phase shift and excitations.
By computing Melnikov function, we give the condi-
tions of existence of homoclinic and heteroclinic chaos,
respectively. Using Melnikov methods proposed in [7],
we obtain the corresponding criteria of suppression of
homoclinic and heteroclinic chaos for primary and sub-

harmonic resonance (Ω/ω = p/1, p ∈ N+), respec-
tively. Numerical simulations are given to illustrate the
effect of the chaos control in this system. Moreover, we
calculate the maximum Lyapunov exponents (LEs) in
parameter plane, and study how to vary the maximum
LE when the parametric frequency varies.

The organization of the paper is as follows. In
Sect. 2, we provide the fixed points and phase portraits
for the unperturbed system of system (1) for show-
ing the existence of homoclinic orbit and heteroclinic
orbit. In Sect. 3, we get the conditions of existence of
homoclinic and heteroclinic chaos by computing Mel-
nikov function. In Sect. 4, by using Melnikov methods
proposed in [7], suitable initial phase-difference inter-
vals and parameter intervals for controlling chaos are
studied, and the criteria for suppression of the homo-
clinic and heteroclinic chaos are given, respectively.
In Sect. 5, we give numerical simulation, numerical
simulations show the consistency and difference with
the theoretical analysis. The conclusion is given in
Sect. 6.

2 Fixed points and phase portraits
for unperturbed system

When δ = f0 = f1 = 0, the system (1) becomes

ẋ = y, ẏ = − sin x − αx, (2)

which is considered as an unperturbed system.
The unperturbed system (2) is a Hamiltonian system,

the corresponding Hamiltonian function is given as

H(x, y) = 1

2
y2 + 1 − cos x + α

2
x2, (3)

and potential function is

V (x, y) = 1 − cos x + α

2
x2. (4)

Jing and Yang [13] give the analysis of the fixed points
and their stabilities for system (2), we can find the fol-
lowing Lemma in paper [13].

Lemma 1 [13]

(i) For α = 0, there are infinite fixed points (Kπ, 0),
where K ∈ N, and (Kπ, 0) are centers for K
even, saddle for K odd.
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Fig. 1 Phase portrait of
system (2): a for α = 0;
b for α = 0.1

(ii) For α > 0.217234, there is only one fixed point
O(0, 0) being the center.

(iii) For α = 0.217234, there are three fixed points:
O(0, 0) being the center and C1(x0, 0) and
C2(−x0, 0)being bifurcation points with two zero
eigenvalues, where x0 is the positive root of equa-
tion sin x = −αx.

(iv) For 0 < α < 0.217234, there are five fixed points
in the internal (−2π, 2π): O(0, 0) being the
center, C1(x1, 0) and C3(−x1, 0) being saddles,
and C2(x2, 0) and C4(−x2, 0) being centers,
where x1 and x2 are the positive roots of equa-
tion sin x = −αx in the internals (π, 3π/2) and
(3π/2, 2π), respectively.

(v) For −1 < α < 0, there are three fixed points in
the internal (−2π, 2π): O(0, 0) being the center,
C1(x1, 0) and C3(−x1, 0) being saddles, where
x1 is the positive root of equation sin x = −αx in
the internal (0, π), respectively.

(vi) For α = −1, there is only one fixed point: O(0, 0)

being bifurcation points with two zero eigenval-
ues.

(vii) For α < −1, there is only one fixed point: O(0, 0)

being the saddle.

Figure 1a and b gives the phase portraits for α = 0
and α = 0.1(α < α0), respectively. From Fig. 1a and
b, we observe that the fixed points (x1, 0) and (−x1, 0)

are connected by two heteroclinic orbits Γ +
het and Γ −

het,
(x1, 0) is connected to itself by homoclinic orbit Γ +

hom,
and (−x1, 0) is connected to itself by homoclinic orbit
Γ −

het.
In the following sections, we use Melnikov methods

to study how to change the dynamics of unperturbed
system (2) under the periodic perturbations and how to
suppress the chaotic dynamics by adjusting parametric
excitation for 0 < α < α0.

3 Chaos inhibition conditions

By Lemma 1(iv) and Fig. 1b, we only consider the
perturbed system (1) for 0 < α < α0. By using the
Melnikov methods proposed in [7], we will give the cri-
teria for controlling homoclinic and heteroclinic chaos,
respectively.

The Melnikov function for system (1) can be given
by

M(t0)=
+∞∫

−∞
y0(t){ f1 sin[ω(t + t0)+θ ]

−f0 cos[Ω(t+t0)+Ψ ] sin x0(t)}dt − δ

+∞∫

−∞
y2

0 (t)dt,

(5)

where (x0, y0) = (x0(t), y0(t)) is the unperturbed
homoclinic or heteroclinic orbits.

We first compute Melnikov function for the homo-
clinic orbits. Because y0(t) is odd and x0(t) is even in
this case, by simple calculation, Melnikov function (5)
becomes

M1(t0) = − 2δ

∞∫

0

y2
0 (t)dt

+ 2 f1 cos(ωt0 + θ)

∞∫

0

y0 sin(ωt)dt

+ 2 f0 sin(Ωt0 + Ψ )

∞∫

0

y0(t) sin(Ωt) sin[x0(t)]dt

= −Chom + Ahom cos(ωt0 + θ)

+ Bhom sin(Ωt0 + Ψ ), (6)
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where Chom = 2δ
∞∫
0

y2
0 (t)dt is a constant once y0(t) is

given,

Ahom = 2 f1

∞∫

0

y0(t) sin(ωt)dt

and

Bhom = 2 f0

∞∫

0

y0(t) sin(Ωt) sin[x0(t)]dt

are functions of the frequencies Ω and ω, respectively.
For the heteroclinic orbits, y0(t) is even and x0(t) is

odd. Thus Melnikov function (5) can be simplified as

M2(t0)=−Chet+Ahet sin(ωt0+θ)+Bhet sin(Ωt0+Ψ ),

(7)

where

Chet = 2δ

∞∫

0

y2
0 (t)dt, Ahet = 2 f1

∞∫

0

y0(t) cos(ωt)dt

and

Bhet = 2 f0

∞∫

0

y0(t) sin(Ωt) sin[x0(t)]dt.

Let t1 = t0 + θ/ω and φ = Ψ − θΩ/ω, then Mel-
nikov function (6) and (7) become

M1(t1) = −Chom+Ahom cos(ωt1)+Bhom sin(Ωt1+φ)

(8)

and

M2(t1) = −Chet + Ahet sin(ωt1) + Bhet sin(Ωt1 + φ),

(9)

respectively.
By the meaning of Melnikov functions, we can get

the following results.

Theorem 1 If f0 = 0 and Ahom − Chom ≥ 0, then
the homoclinic bifurcation of the system (1) will occur,
which implies that the system (1) may be chaotic. If
f0 �= 0 and Bhom ≤ Ahom −Chom, then the homoclinic
bifurcation of the system (1) will occur, which implies
that the system (1) may be chaotic.

Theorem 2 If f0 = 0 and Ahet − Chet ≥ 0, then the
heteroclinic bifurcation of the system (1) will occur,
which implies that the system (1) may be chaotic. If
f0 �= 0, Ahet − Chet ≥ 0 and Bhet ≤ Ahet − Chet, then
the heteroclinic bifurcation of the system (1) will occur,
which implies that the system (1) may be chaotic.

According to Theorem 1 and Theorem 2, we obtain
that a necessary condition for M1(t1) or M2(t1) always
having the same sign is Bhom > Ahom − Chom for
(8) or Bhet > Ahet − Chet ≥ 0 for (9). Because of
the symmetry of homoclinic and heteroclinic orbits,
they will give rise to the same set of optimal initial
phase-difference that are suitable for taming the chaotic
dynamics. By optimal suppressing values of φ (denoted
as φopt), we can obtain the optimal suppressing values
of Ψ (denoted as Ψopt).

4 Suitable initial phase-difference intervals

In this section, we investigate the ranges of suitable ini-
tial phase-difference intervals for chaos suppression by
studying the changes of behavior of the Melnikov func-
tion (8) and (9). We shall consider the cases associated
with the heteroclinic and homoclinic chaos separately.
We always assume Ω/ω = p/1, p ∈ N+.

4.1 For homoclinic orbits

If f0 = 0, the chaos-suppressing excitation is elimi-
nated. The corresponding Melnikov function

M
′
1(t1) = −Chom + Ahom cos(ωt1) (10)

changes sign at some t1, i.e., Chom < Ahom. when we
add the parametric excitation to the system (1), the suf-
ficient condition for M1(t1) change sign at some t1 is
Bhom ≤ Ahom − Chom. Thus

Bhom > Ahom − Chom ≡ Bmin (11)

is a necessary condition for M1(t1) to always have the
same sign.

In order to the maxima of M
′
1(t1) coincide with the

minima of Bmin sin(Ωt1 +φ), we can get φopt = 3π/2
for the homoclinic orbits such that those functions are in
opposition. Moreover, φ = φopt ±Δφmax is associated
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with the maximum deviation from φopt such that there
still exists a value of Bhom(Bhom > Bmin) for which
M1(t1) < 0, ∀t1. For φ > φopt + Δφmax or φ <

φopt − Δφmax, regulation is not expected. Δφmax is
given by

Δφmax = arcsin

{
cos

[
p · arccos

(
Chom

Ahom

)]}
, (12)

where 0 < p < π/(2 arccos(Chom/Ahom)). By the
definition of φ, we get

Ψopt = φopt + Ωθ

ω
= 3π

2
+ Ωθ

ω
(13)

and

ΔΨmax = arcsin

(
Chom

Ahom

)
. (14)

Next, we will study the dependence of the threshold
values of f0 on Ψ , specially on Ψ = Ψopt ± ΔΨmax,
regulation will only be effective when the lower thresh-
old value of Bhom, hereafter denoted by B∗

min which is
larger than Bmin (which corresponds to Ψ = Ψopt). By
simple calculation, we obtain the following analytical
expression

B∗
min = Ahom − Chom

cos(ΔΨmax)
. (15)

For Ψ = Ψopt ± ΔΨmax, the upper threshold values of
Bhom (denoted as B∗

max) is given by

B∗
max = Ahom

p2 cos(ΔΨmax), (16)

for Ω = pω. If Ψ /∈ [Ψopt − ΔΨmax, Ψopt + ΔΨmax],
chaos suppression is not guaranteed for any choice of
Bhom.

Using (14), (15), and (16), we can get the following
analytical expression of threshold values of f0,

f0 min(Ψopt ± ΔΨmax) = f1 R(1 − Chom/Ahom)

cos(ΔΨmax)
, (17)

f0 max(Ψopt ± ΔΨmax) = f1 R

p2 cos(ΔΨmax), (18)

where R = ∫ +∞
0 y0(t) sin(ωt)dt/

∫ +∞
0 y0(t) sin(Ωt)

sin[x0(t)]dt.
So, we can get the following conclusion.

Theorem 3 Supposed the values of parameters α, δ,
Ω , f1, ω and θ are given. If f0 ∈ [ f0min(Ψopt ±
ΔΨmax), f0max (Ψopt ± ΔΨmax)] and Ψ ∈ [Ψopt −
ΔΨmax, Ψopt + ΔΨmax], then the homoclinic chaos of
system (1) should be suppressed, where Ψopt, ΔΨmax,
f0min(Ψopt ± ΔΨmax) and f0max (Ψopt ± ΔΨmax) are
given in Eqs. (13), (14), (17) and (18), respectively.

4.2 For heteroclinic orbits

For the heteroclinic orbits. let t1 = τ0 +π/2ω and Φ =
φ + Ωπ/2ω, the function (9) can be changed into

M2(τ0) = −Chet+ Ahet cos(ωτ0)+Bhet sin(Ωτ0+Φ),

(19)

which show that the Melnikov functions of hetero-
clinic orbits and homoclinic orbits are similar. If Φopt

is for (19), then φopt = Φopt − Ωπ/2ω is for (9).
By definition of Φopt, we can obtain Φopt = 3π/2,
so φopt = 3π/2 − Ωπ/2ω, Ψopt = φopt + Ωθ/ω for
the heteroclinic orbits. We can obtain the following the-
orem in the same way.

Theorem 4 Supposed the values of parameters α, δ,
Ω , f1, ω and θ are given. If f0 ∈ [ f0min(Ψopt ±
ΔΨmax), f0max (Ψopt ± ΔΨmax)] and Ψ ∈ [Ψopt −
ΔΨmax, Ψopt +ΔΨmax], then the heteroclinic chaos of
system (1) should be suppressed, where f0min(Ψopt ±
ΔΨmax) = f1 R(1−Chet/Ahet)

cos(ΔΨmax)
, f0max (Ψopt ± ΔΨmax) =

f1 R
p2 cos(ΔΨmax), R =

∫ +∞
0 y0(t) cos(ωt)dt∫ +∞

0 y0(t) sin(Ωt) sin[x0(t)]dt
,ΔΨmax

= arcsin( Chet
Ahet

) and Ψopt =3π/2−Ωπ/2ω+Ωθ/ω.

5 Numerical simulations

In this section, we give numerical simulation to check
up the theoretical results obtained in the previous sec-
tions. Fixing α = 0.1, f1 = 0.519, δ = 0.125, and
other parameters are varied.

To check up our theoretical results, the homoclinic
bifurcation curves for Ahom = Chom and hetero-
clinic bifurcation curve for Ahet = Chet plotted in
(ω, f1) plane are showed in Fig. 2, respectively. If
Ahom > Chom or Ahet > Chet, the system (1) may
exhibit chaos at f0 = 0. Taking ω = 1, there are
R1(δ, ω) = f1Chom/Ahom = 0.2126 and R2(δ, ω) =

123



www.manaraa.com

322 X. Chen et al.

Fig. 2 Homoclinic bifurcation curve for Ahom = Chom and het-
eroclinic bifurcation curve for Ahet = Chet in (ω, f1) plane with
α = 0.1, δ = 0.125

f1Chet/Ahet = 0.4434 in Fig. 2. Figure 3 show unsta-
ble (red) and stable (blue) manifolds associated with a
saddle fixed point near (3.49906, 0) and (−3.49906, 0)

for ω = 1, f0 = 0 and three values of f1. For
f1 = 0.2126, Fig. 3a shows the unstable and stable
manifolds of homoclinic orbits intersect tangentially,
and the unstable and stable manifolds of heteroclinic
orbits don’t intersect. For f1 = 0.4434, from Fig. 3b,

we observe that the unstable and stable manifolds of
homoclinic orbits intersect transversely, and the unsta-
ble and stable manifolds of heteroclinic orbits inter-
sect tangentially. For f1 = 0.519, the unstable and
stable manifolds intersect transversely (Fig. 3c). When
α = 0.1, ω = 1, δ = 0.125, f1 = 0.519, and f0 = 0,
the chaotic attractor is showed in Fig. 4. Now we add
the parametric excitation in the chaos dynamics, the
suppressing of heteroclinic chaos and the suppressing
of homoclinic chaos are considered separately.

For the suppressing of heteroclinic chaos. Taking
Ω = ω = 1, δ = 0.125, and f1 = 0.519, by Mel-
nikov function (19), we have Φopt = 3π/2, and by
definition of Ψopt, we obtain Ψopt = π + π/6 and
ΔΨmax = 1.0242 for the heteroclinic orbits. Thus, for
Ψopt and Ψopt ± ΔΨmax, the suitable intervals of f0 for
chaos control are approximately [0.0779 ,0.5349] and
[0.1499,0.278], respectively.

The bifurcation diagram of (1) in ( f0, y) plane at
Ω = ω = 1, δ = 0.125, f1 = 0.519, Ψ =
Ψopt = π + π

6 and bifurcation diagram in (Ψ, y) plane
at Ω = ω = 1, δ = 0.125, f1 = 0.519, f0 =
0.2 are given in Fig. 5a, b, respectively. By Theo-
rem 4, we obtain that the chaos in the interval [0.0779
,0.5349] of f0 for Ψ = Ψopt and chaos in the interval

Fig. 3 Poincaré maps for
system (1), showing stable
and unstable manifolds of
saddles for α = 0.1, ω =
1, δ = 0.125, f0 = 0 and
several values of f1: (a) for
f1 = 0.2126, (b) for
f1 = 0.4434, (c) for
f1 = 0.5319
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Fig. 4 The chaotic attractor
of system (1) for
α = 0.1, ω = 1, δ =
0.125, f1 = 0.519 and
f0 = 0: a Phase portrait;
b Poincaré map

Fig. 5 Bifurcation
diagrams of system (1) at
α = 0.1, δ = 0.125, Ω =
ω = 1 and f1 = 0.519: (a)
in ( f0, y) plane at
Ψ = Ψopt = π + π

6 ; (b) in
(Ψ, y) plane at f0 = 0.2

Fig. 6 Bifurcation diagram
in (Ψ, y) plane of system (1)
at α = 0.1, δ =
0.125, Ω = ω = 1 and
f1 = 0.519: (a) f0 = 0.75;
(b) f0 = 0.9; (c) f0 = 1.4
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Fig. 7 Bifurcation diagram
in ( f0, y) plane of system
(1) at α = 0.1, δ =
0.125, Ω = ω = 1 and
f1 = 0.519: (a) Ψ = Ψopt;
(b) Ψ = Ψopt − ΔΨmax

Fig. 8 Bifurcation diagram
in ( f0, y) plane of system
(1) at α = 0.1, δ =
0.125, Ω = ω = 1 and
f1 = 0.519: (a)
Ψ = Ψopt + ΔΨmax; (b)
Ψ = 4

[Ψopt − ΔΨmax, Ψopt + ΔΨmax] = [2.641, 4.6894] for
f0 ∈ [0.1499, 0.278] should be suppressed. In fact, we
find that the chaostic behaviors in the subset of above
intervals can be controlled to periodic behaviors, which
indicate the numerical obtained ranges of suppression
for heteroclinic chaos are less than the theoretical pre-
dictions.

For the suppressing of homoclinic chaos. Taking
Ω = ω = 1, δ = 0.125, f1 = 0.519, by the Melnikov
function (6), the definition of Ψopt and parameters val-
ues, we have Ψopt = π

2 + π
6 , ΔΨmax = 0.422. Thus,

for Ψ = Ψopt and Ψopt ± ΔΨmax, the interval of suit-
able of f0 for chaos control is approximately (0.6277,
1.0631] and (0.6881, 0.9698].

The maximum range of f0 forΨopt is (0.6277,1.0631],
the theoretical range of Ψ is [Ψopt − ΔΨmax, Ψopt +
ΔΨmax] ≈ [1.6724, 2.5164]. Figure 6a–c corresponds
to the cases f0 = 0.75, 0.9 and 1.4, respectively.
Figure 6a, b shows the theoretical ranges of ΔΨmax

are less than the numerically obtained ranges of sup-
pression of chaos, and the chaotic motions can be con-
trolled to period-1 orbit by adjusting parameter Ψ . Note
that, although suppression of homoclinic chaos is not

expected at f0 = 1.4 , the system (1) can also reach
periodic states by adjusting parameter Ψ .

The bifurcation diagrams corresponding to Ψ =
Ψopt, Ψ = Ψopt ± ΔΨmax, and Ψ = 4 are plotted
in Fig. 7a, b, 8a and b, respectively. From the figures,
we can see that the numerically obtained ranges of sup-
pression of chaos for Ψ = Ψopt and Ψ = Ψopt±ΔΨmax

are larger than those predicted theoretically. Moreover,
for Ψ = 4 /∈ [Ψopt −ΔΨmax, Ψopt +ΔΨmax], suppres-
sion of homoclinic chaos is not expected.

For α = 0.1, d = 0.125, Ω = ω = 1, f1 =
0.519, θ = π

6 , the distribution (grid of 200 × 100
points) of maximum LEs plotted in (Ψ/π, f0) plane
is shown in Fig. 9a. The local amplification (grid of
200 × 100 points) of Fig. 9a in the region Ψ ∈ [π/2 +
π/6 − π/4, π/2 + π/6 + π/4], f0 ∈ [0, 1.2] is given
in Fig. 9b. For parameters f0 and Ω , we find that the
theoretical prediction regions of suppression chaos for
homoclinic orbits is less than those in Fig. 9. For the
heteroclinic orbits, we find that the region of chaos
suppressing is less than the theoretical prediction. This
indicate the suppression of homoclinic chaos is more
effective than heteroclinic chaos.
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Fig. 9 (a) Maximum Lyapunov exponents (L) distribution in the
(Ψ, f0) parameter plane (grid of 200×100 points) for system (1)
at α = 0.1, d = 0.125,Ω = ω = 1, f1 = 0.519. Where blue

and white indicate that L > 0 and L ≤ 0, respectively. (b)Local
amplification of (a) in the region Ψ ∈ [ π

2 + π
6 − π

4 , π
2 + π

6 + π
4 ]

and f0 ∈ [0, 1.2]

Fig. 10 Maximum Lyapunov exponents (L) distribution in the
(Ψ, f0) parameter plane (grid of 200 × 100 points) for system
(1) at α = 0.1, d = 0.125, ω = 1, f1 = 0.519, θ = π

6 . Where

blue and white indicate that L > 0 and L ≤ 0, respectively. (a)
Ω = 2ω; (b) Ω = 3ω

Fig. 11 Bifurcation
diagram in ( f0, y) plane of
system (1) at α = 0.1, δ =
0.125, Ω = ω = 1, θ = π

6
and f1 = 0.519: a Ω = 3ω

2 ,
Ψ = π

2 + π
6 ; b Ω = 2ω,

Ψ = π
2 + π

6

For the cases Ω = pω, (p > 1), we only plot
the maximum LEs for Ω = 2ω and Ω = 3ω. The
maximum LEs of system (1) in (Ψ, f0) plane (grid of
200 × 100 points) for α = 0.1, d = 0.125, ω =
1, f1 = 0.519, Ω = 2ω and α = 0.1, d =
0.125, ω = 1, f1 = 0.519, θ = π/6, Ω = 3ω

are shown in Fig. 10a and b, respectively. In each case,
we observe that there is a wide region, in which homo-
clinic chaos can be suppressed.

In order to illustrate the influence of the phase-
difference on inhibiting homoclinic chaos. The bifur-
cation diagrams for Ω = 3ω/2, Ψ = π/2 + π/6 and
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Fig. 12 Maximum
Lyapunov exponents plotted
against the frequency of
perturbation of system (1) at
a = 0.1, δ = 0.125, ω =
1, f1 = 0.519 and
f0 = 0.6: (a) Ψ = 0; (b)
Ψ = π/2; (c) Ψ = π

Ω = 2ω, Ψ = π/2 + π/6 are plotted in Fig. 11a and
b, respectively. The diagrams show that there are wide
ranges of f0 in which chaotic motion can be converted
to regular motion in each case. So, phase control is
rather effective and can be used usually.

To know about the influence of the frequency of the
chaos-suppressing excitation, we observe the change
of the maximum LEs versus Ω . In Fig. 12a–c, we give
the maximum LEs λ versus Ω for Ψ = 0, π/2, and
π , respectively. As Ω trends to some resonant frequen-
cies or in their neighbor, the value of the λ becomes
negative and chaotic behaviors disappears. So if f0 is
chosen appropriately, the phase shift and frequency of
the chaos-suppression excitation can play an important
role in inhibiting chaos. So, the system chaotic motions
can be converted to period-motions by adjusting the
parameter f0, for example, to period-one orbit as given
in Figs. 7a, b, 8a, 11a, and b.

6 Conclusion

In this paper, we investigate the control of a chaotic
pendulum system with excitations and a phase shift by
using Melnikov methods, and give the chaos control
conditions of heteroclinic bifurcation and homoclinic
bifurcation, respectively. Numerical simulations show

that the chaos behaviors can be controlled to periodic
orbits, and the numerically obtained ranges of suppres-
sion for homoclinic chaos are larger than the theoret-
ical predictions, and the numerically obtained ranges
of suppression for heteroclinic chaos are less than the
theoretical predictions. For chaos is not due to hetero-
clinic bifurcation and homoclinic bifurcation, although
we can’t give the condition of suppression of chaos
using Melnikov methods, chaos also can be controlled
by adjusting parameter of suppressing excitation.
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